Uncertainty relations for general unitary operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric and classical fidelity uncertainty relations for random unitary matrices

We analyze uncertainty relations on finite dimensional Hilbert spaces expressed in terms of classical fidelity, which are stronger then metric uncertainty relations introduced by Fawzi, Hayden and Sen. We establish validity of fidelity uncertainty relations for random unitary matrices with optimal parameters (up to universal constants) which improves upon known results for the weaker notion of ...

متن کامل

Uncertainty Relations for General Phase Spaces

We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by Fourier transform. The physical examples discussed here are standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow an arbitrary choice of metric for the distance of outcomes, and the cho...

متن کامل

Some concavity properties for general integral operators

Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.

متن کامل

Localization for Random Unitary Operators

We consider unitary analogs of 1−dimensional Anderson models on l2(Z) defined by the product Uω = DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of Uω is pure point almost surely for all val...

متن کامل

Unitary Invariants for Compact Operators

We describe in this note how the "boundary representation" technique introduced in [l ] leads to a complete classification of compact operators on Hubert spaces to unitary equivalence (Theorem 3), in terms of a sequence of invariants related to (and generalizing) the numerical range. These invariants are, we feel, vastly simpler than one might have anticipated in so general a situation. Full de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2016

ISSN: 2469-9926,2469-9934

DOI: 10.1103/physreva.94.042104