Uncertainty relations for general unitary operators
نویسندگان
چکیده
منابع مشابه
Metric and classical fidelity uncertainty relations for random unitary matrices
We analyze uncertainty relations on finite dimensional Hilbert spaces expressed in terms of classical fidelity, which are stronger then metric uncertainty relations introduced by Fawzi, Hayden and Sen. We establish validity of fidelity uncertainty relations for random unitary matrices with optimal parameters (up to universal constants) which improves upon known results for the weaker notion of ...
متن کاملUncertainty Relations for General Phase Spaces
We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by Fourier transform. The physical examples discussed here are standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow an arbitrary choice of metric for the distance of outcomes, and the cho...
متن کاملSome concavity properties for general integral operators
Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.
متن کاملLocalization for Random Unitary Operators
We consider unitary analogs of 1−dimensional Anderson models on l2(Z) defined by the product Uω = DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of Uω is pure point almost surely for all val...
متن کاملUnitary Invariants for Compact Operators
We describe in this note how the "boundary representation" technique introduced in [l ] leads to a complete classification of compact operators on Hubert spaces to unitary equivalence (Theorem 3), in terms of a sequence of invariants related to (and generalizing) the numerical range. These invariants are, we feel, vastly simpler than one might have anticipated in so general a situation. Full de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2016
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.94.042104